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Module –I: Quantum Mechanics 
 

Wave function and its Physical Significance 
 

Wave Function 
 

A wave function in quantum mechanics describes the quantum state of an isolated system 

of one or more particles containing all the information about the entire system. It gives is 

probabilistic interpretation of amplitude, commonly denoted by the Greek letters ψ or Ψ. It 

is single valued and continuous function of space and time. 

Properties of Wave function 
 

Wave function has the following properties  
(i)  It contains all the measurable information about the particle. 
(ii) It basically corresponds to the probability of finding a particle in space (in 3D) 
      that will be one. i.e. ψ*ψ = 1 in all over the space. 

 (iii) It is single valued and continuous function of space and time.   
 (iv) It allows expectation value or effective average value calculation. 
 (v) It allows energy calculation via Schrodinger’s equation. 
 (vi) It should be sine wave for free particle, implies a preciously determined 
                    momentum and a totally uncertain position (uncertainty principle). 
 

Postulates of Quantum Mechanics 
 

Postulate 1. The state of a quantum mechanical system is completely specified by a function 
Ψ(r, t) that depends upon the coordinates of the particle(s) and on time. This function, called 
the wavefunction or state function, has the important property that |Ψ(r, t)|2 represents the 
probability density of the particle located at position r at time t. 

The normalization condition is 1),(
2






drtr . The wavefunction must also be single-

valued, continuous, and finite. 
 
Postulate 2. To every observable in classical mechanics there corresponds a linear, 
Hermitian operator in quantum mechanics. 
 
Postulate 3. If a system is in a state described by a normalized wavefunction Ψ, then the 
average value of the observable corresponding to Aˆ is given by 

 
Postulate 4. The wavefunction or state function of a system evolves in time according to the 
time-dependent Schr¨odinger equation 
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Operators in Quantum Mechanics and Commutation Relations 

 
Linear Operator 

 
Hermitian Operator 

 

 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 3 

 

 

 

 
 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 4 

 

 

 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 5 

 

 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 6 

 

 

 

 

 

 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 7 

 

 

 

 

 

 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 8 

 

 

 

 

 
Eigen Function and Eigen Value 
If an operator operates on a wave function and after the operation the wave function 
remains unchanged, then that wave function is known as the eigen function corresponding 
to that operator and the constant is known as the eigen value. 

Here 
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Theorem:

 

 

 
 
Schrodinger Wave Equation 
The wave function of a particle of fixed energy E could most naturally be written as a linear 
combination of wave functions of the form 

 
representing a wave travelling in the positive x direction, and a corresponding wave 
travelling in the opposite direction, so giving rise to a standing wave, this being necessary in 
order to satisfy the boundary conditions. 

The above equation can be converted in terms of energy and momentum, expressed 
as   

                                              
We adopt the wave function above as being the appropriate wave function for a free particle 
of momentum p = ℏk and energy E = ℏω. 
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We now generalize this to the situation in which there is both a kinetic energy and a 
potential energy present, then E = p2/2m + V (x), so that 

 
 

where,  Ψ is now the wave function of a particle moving in the presence of a potential V (x). 

 
which is the famous time dependent Schr¨odinger wave equation. 

Let the trial solution of the Scrodinger’s wave equation can be given by 

 
i.e. where the space and the time dependence of the complete wave function are contained 
in separate factors 

 
We now see that the factor cancels from both sides of the equation, giving us 

 

 
which is the time independent Schr¨odinger equation. 
 

Time independent Schrodinger’s Wave equations can be established by the methods 
of separation of variable. Let us take the solution for ψ(t; x) as 

 



Quantum mechanics-2                                                                                                 Lecture Note: Module-1 

 

Prepared by Dr. Rajesh Das, Department of Applied Sciences, HIT-Haldia Page 11 

 

 
Since now the left hand side in above Eq. is only dependent on t and the right hand side 
only on x, both sides must be equal to a constant, which we will call E, and we can thus 
solve each side independently. The left side yields 

 

 
Stationary states 

 

 
If a particle of mass m has a definite energy E, its wave function (x, y, z, t) is a product of a 

time-independent wave function (x, y, z) and a factor that depends on time but not 

position. Then the probability distribution function |(x, y, z, t)|2 = |(x, y, z)|2 does not 
depend on time (stationary states).  
 

 

Particle in One-dimensional Box 
Suppose we have a single particle of mass m confined to within a region 0 < x < L with 
potential energy V = 0 bounded by infinitely high potential barriers, i.e. V = ∞for x < 0 
and x > L. The potential experienced by the particle is then: 
 
In the regions for which the potential is infinite, the wave function will be zero, for exactly 
the same reasons that it was set to zero in Section 5.3, that is, there is zero probability of 
the particle being found in these regions. Thus, we must impose the boundary conditions 

 
Meanwhile, in the region 0 < x < L, the potential vanishes, so the time independent 
Schr¨odinger equation becomes: 

    /, , , , ,   iEtx y z t x y z e
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It is now that we impose the boundary conditions, that at x = 0: 

 

 
which tells us that either A = 0, in which case ψ(x) = 0, which is not a useful solution (it says 
that there is no partilce in the well at all!) or else sin(kL) = 0, which gives an equation for k: 

 

 
 
We exclude the n = 0 possibility as that would give us, once again ψ(x) = 0, and we exclude 
the negative values of n as the will merely reproduce the same set of solutions (except with 
opposite sign4) as the positive values. Thus we have 

 
we have seen that the boundary conditions, have the effect of restricting the values of the 
energy of the particle to those Eq. The associated wave functions will be as, that is we apply 
the normalization condition to determine A (up to an inessential phase factor) which finally 
gives 

 
Particle in a three-dimensional box 

In analogy with our infinite square-well potential (U(x) = 0 inside, U(x) = ∞ outside),  
let us consider a three-dimensional region in space (box) of equal sides of length L, with the 
same potential (U(x) = 0 inside, U(x) = ∞ outside). 

We will consider the wave function as separable, that is, can be written as a product 
of the three independent dimensions x, y and z: 

  , , ( ) ( ) ( )x y z X x Y y Z z 
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The Schrödinger equation inside the box becomes 
 
 
 
Or, dividing by X(x)Y(y)Z(z) we have: 

 
 
 
 

 
This says that the total energy is contributed to by three terms on the left, each 

depending separately on x, y and z.  Let us write E = Ex + Ey + Ez.  Then this equation can be 
separated into three equations: 

 
 
 
 
 
 
 
 
These obviously have the same solutions separately as our original particle in an 

infinite square well, and corresponding energies: 
 

 
 
 
               
 
 
 

A particle’s wave-function is the product of these three solutions,  
 
 
 

We can use the three quantum numbers nX, nY, and nZ to label the stationary states 
(states of definite energy).  Here is an example of a particle in three possible states (nX, nY, nZ) 
= (2, 1, 1), (1, 2, 1) or (1, 1, 2). 
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The three states shown here are degenerate: Although they have different values of nX, 
nY, and nZ, they have the same total energy E. 
 

 
 

Energy Degeneracy 

 For a particle in a three-dimensional box, the allowed energy levels are surprisingly 
complex.  To find them, just count up the different possible states. 

 Here are the first 6 for an equal-sided box: 
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