Quantum mechanics-2 Lecture Note: Module-1

Module -I: Quantum Mechanics

Wave function and its Physical Significance

Wave Function

A wave function in quantum mechanics describes the quantum state of an isolated system
of one or more particles containing all the information about the entire system. It gives is
probabilistic interpretation of amplitude, commonly denoted by the Greek letters y or W. It
is single valued and continuous function of space and time.

Properties of Wave function

Wave function has the following properties
(i) It contains all the measurable information about the particle.
(ii) It basically corresponds to the probability of finding a particle in space (in 3D)
that will be one. i.e. y*yp =1 in all over the space.
iii) It is single valued and continuous function of space and time.
iv) It allows expectation value or effective average value calculation.
v) It allows energy calculation via Schrodinger’s equation.
vi) It should be sine wave for free particle, implies a preciously determined
momentum and a totally uncertain position (uncertainty principle).

(
(
(
(

Postulates of Quantum Mechanics

Postulate 1. The state of a quantum mechanical system is completely specified by a function
WY(r, f) that depends upon the coordinates of the particle(s) and on time. This function, called
the wavefunction or state function, has the important property that |W(r, f) |2 represents the
probability density of the particle located at position r at time .

The normalization condition is I |y/(r,t)|2dr =1. The wavefunction must also be single-

valued, continuous, and finite.

Postulate 2. To every observable in classical mechanics there corresponds a linear,
Hermitian operator in quantum mechanics.

Postulate 3. If a system is in a state described by a normalized wavefunction W, then the
average value of the observable corresponding to A" is given by
(A) = / U* Aldr
oo
Postulate 4. The wavefunction or state function of a system evolves in time according to the
time-dependent Schr odinger equation
ovr .

th— = HU(r,t),

th— (r,t),

where H is the Hamiltonian of the system. If W is an eigenstate of H,

it follows that W(r,t) = ¥(r, 0)e FH/,
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Quantum mechanics-2 Lecture Note: Module-1

Operators in Quantum Mechanics and Commutation Relations

position operator & defined by zi(z) = z1(z)

momentum operator p  defined by  pi(x) = —iﬁ?
x
Linear Operator
An operator A is said to be linear if
Aef(s) = cAf(x)
and

A(f(z) +g(z)) = Af(z)+ Ag(z)

where f(z) and g(z) are any two appropriate functions and ¢ is a complex constant.

Examples: the operators z, p and H are all linear operators. This can be checked by explicit
calculation (Exercise!).

Hermitian Operator
The operator A is called hermitian if

Examples:

(i) the operator  is hermitian. Indeed:

] (#0)" Y dz = f (20)* ¢ dx = ] o o dr = / o 2 dz

(ii) the operator p = —ihd/dx is hermitian:

* . di )
/ () dr = / (ah d;) o da
A\
_ ih/(;) b d
o

and after integration by parts, and recognizing that the wfn tends to zero as x — oo, we get

on the right-hand side
dip
ik ] o e = / b dae
dx

iii) the K.E. operator T' = 52/2m is hermitian:
p P

j (T;)L dr = % f (p%)z_ dx

L[,
= f (pv)" py da

2m

1
- f 5 da

2m

= / T dx
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Quantum mechanics-2 Lecture Note: Module-1

Theorem: The eigenvalues of hermitian operators are real.
Proof: Let 1/ be an eigenfunction of A with eigenvalue a:

Ay = ar)

then we have

/(fiu"f)* Vdr = j(a’c_ﬂ)*ﬂ: dr =a" /u’;*z_g} dz
and by hermiticity of A we also have
] (A;)* Vdr = u"}*ﬁlu’s dr = a-/u‘)*m;': dx

hence

(a* —a) /q_{)*u‘} dzr =20

and since [v* dz # 0, we get
a—a=0

The converse theorem also holds: an operator is hermitian if its eigenvalues are real.

Example: A=jand B = p = —ihd/dz, then we have
ABf(x) = &pf(x)

We can of course also construet another new operator:

px
Then, by definition of the operator product,
pzf(z)

means that z is first operating on f(z) and then p is operating on the function z f(z).
Compare the results of operating with the produets pz and zp on f(z):

ip— ) f(e) = —in [T 4
(5~ §2)f (x) = r( - dr(«rf(x)))

and hence by the product rule of differentiation:

(@p — p2)f(z) = i f(z)
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and since this must hold for any differentiable function f(z), we can write this as an operator
equation:
zp — pr =ih

Thus we have shown that the operator product of z and p is non-commuting.
Because combinations of operators of the form
AB — BA
do frequently arise in QM calculations, it is customary to use a short-hand notation:
[A,B]= AB - BA
and this is called the commutator of A and B (in that order!).
It [A, B] # 0, then one says that A and B do not commute,

if [fl B] — 0, then A and B are said to commute with each other.
An operator equation of the form of

[A, B] = something

is called a commutation relation.
[&,5] = ih

is the fundamental commutation relation.

In classical mechanics one defines the angular momentum by

L=7Fxp

We get the angular momentum operator by replacing the vector # by the vector operator

r = (z, y, z) and the momentum vector by the momentum vector operator
p= —ihV = —ih(0s, Oy, I;)
where d, = d/0z ete.

The complete fundamental commutation relations of the coordinate and momentum operators
are

[i':pf} = [ﬁ~ﬁy] = [Z;pz] =ih

and

It will be convenient to use the following notation:

xry =T, :}ASQZ‘Q, .1'321‘:’
and
Pr =Pz, P27 Py, P3— Pz
we can then summarize the fundamental commutation relations by

where 4;; is the Kronecker symbol:
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Next consider [z, L,|: we have
hence

and similarly .
[z, L.] = —ihy

etc. We can summarize the nine commutation relations:
[Ih L_?] = 'ih-é‘ijk.fk

where
1 it (ijk) = (1,2,3) or (2,3,1) or (3,1,2)
gr=2 —1 it (igk) =(1,3,2) or (3,2,1) or (2,1,3)
0 if i1=jori=korj=%k

and summation over the repeated index k is implied.

Similarly one can show
[Pza LJ] = 'ih-é‘z’jkpk

after which it is straight forward to deduce:

[ﬁi«ﬁj] = ihgijkffk

The important conclusion from this result is that the components of angular momentum have
no common eigenfunctions.

Of course, we must also show that the angular momentum operators are hermitian. This is
of course plausible (reasonable) since we know that the angular momentum is a dynamical
variable in classical mechanics. The proof is left as an exercise.

We can construct one more operator that commutes with all components of L: define the square
of L by

~

LP=02+102+12
then
T T2 T2 72 72
[Ll‘: L ] = [LI: LI + Ly + Lz]
T2 T 72
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Quantum mechanics-2

Now there is a simple technique to evaluate a commutator like [LI Lf,] write down explicitly

the known commutator [IA,,r f,-y]:

~

LoL,— LyL, = ihL.

multiply this on the left by f,y., then multiply on the right by fly:

=~

Lyiby—[20, — ihL,L.

and similarly
hence

and similarly

Lecture Note: Module-1

Expectation values.

The expectation value of an operator A that operates on 7 is defined by

{#i) = / o* A dz

The Heisenberg Uncertainty Relations

The wave function W(x) cannot describe a particle that is both well-localized in space
and has a sharp momentum. The uncertainty in the measurement is given by

Ax Ap = #I2

and Ap= [(p2 >— (p}2 ]IH

to be evaluated using position and momentum operators.

where  Ax= |:<x2>_{x>2 Tf:

This is in great contrast to classical mechanics. What the relation states is that there is
a quantitative limitation on the accuracy with which we can describe a system using
our familiar, classical notions of position and momentum. Position and momentum are
said to be complementary (conjugate) variables.

Example 1: A particle of mass m is in the state
—_— 2 1
‘-IJ(X, ;) = Ae al(mx ;.ﬁ)+n],
where A and a are positive real constants. (a) Find A. (b) Calculate the expectation

values of <x>, <x?>, <p>, and <p?>. (d) Find &, and G- Is their product consistent with
the uncertainty principle?
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Quantum mechanics-2

: f 2am\ "
_ 2 —Qnm'r' /R _ —
(a) 1=24] _/0 ' dz = 2|4 ?\, QO:m;H |4 V 2am A ( wh ) )

- 2 0.] [Odd integrand.]

r .
(b) (=) =j z|U|*dx = 0.
s [T 2 . 1 Th h
3 _QAE] .2 —Za,m.rfhdt=2A2 _ .
=) =24 0 o =2 22(2am/h) ' 2am ~ | dam
Remember:
J‘Pe—“; dx = %I§|

dlx
) = m2 _[T] :
1 (mye

dt

J’\e—ﬂ‘d&. dala)

7 b
5, ha " d“lI’
2 — (__) Wdr — —h* [ﬂf‘
(p I / i O Q
— _ﬁifar' { 2am ( zam ) tu] dr = 2amh {f | 2dr — 2‘:"/.#|~Dlgd_r}
¥
= 2amh (1 _amy { = 2amh (1 Jam ) = 2amh (l) =
“h dam 2
(c) e v h — = _h'
0z = (z7) — (2) dam — |%" dam
O'g = (p*) — (p)? = amh = |5, = Vamh

This is consistent with the uncertainty principle
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Quantum mechanics-2 Lecture Note: Module-1

Examp|e 2- Consider a particle whose normalized wave function is
tx) = 2aVa xe x>0
=0 x<0

(a) For what value of x does P(x)=|y| 2 peak? (b) Calculate <x>, <x®> and <p>, <p%> .
(c) Verify uncertainty relation.

(a) The peakin P(x) occurs when dP(x)/dx = 0 that is, when

d_“i(fe‘?“r =2x(1-— Lu)e_h'"‘ =0 — x = 1.

o

N R :Lj a3 3
(b) {x) jdx.‘.(fm e ) i n dyy'e ia

2a
0

= j dx X(da’re™ ™) = 4 _3

Ba’ a

1

Gamma functions:I"(n) =I.\""‘é""d\' for n>0,I'(n+1)=nl"(n);

i

i 1
['(n)=(n-1)! for nis poistive integer. ['(1)=1 and ;%]

o0

(p5——rh(4a] _‘“E%( _“']dvc—{) (Has to be real)

<p1> =i’ {4(){3 }TIE_M a—l(xe"m )dx =—k (40{" ){—26{7 xe " “dx+ alT xe dx
0
)

2

il i . aa’ [I:E—zmdx ‘ -2 [—2a3+a3]=a2h2
{25{ T o

Eigen Function and Figen Value
If an operator operates on a wave function and after the operation the wave function
remains unchanged, then that wave function is known as the eigen function corresponding
to that operator and the constant is known as the eigen value.

Here

Af(2) = af(x)

where a is some constant of proportionality. In this case f(z) is called an eigenfunction of A
and a the corresponding eigenvalue.
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Example: Consider the function f(z,t) = e!k==t),
This represents a wave travelling in = direction.
Operate on f(z) with the momentum operator:

d o
pf(x) = —ih—f(z) = (—ih)(ik)eitkz—wt)

= kf()

Theorem:
if two operators A and B commute, then they have common eigenfunctions.

Proof: Let ¢ be an eigenfunction of A with eigenvalue a:

Ay = arp

operating on both sides with B we get,
B(Ay) = aBy

on the Lh.s. we can write E_Aiw, and then since by assumption A and B commute, we get
AB P = aB P

thus Bt is an eigenfunction of A with the same eigenvalue as «; therefore B1 can differ from
v only by a constant factor, ¢.e. we must have

B = b

i.e. 1 is also an eigenfunction of B.

Schrodinger Wave Equation
The wave function of a particle of fixed energy E could most naturally be written as a linear
combination of wave functions of the form
U(z,t) = Ae'Feet)
representing a wave travelling in the positive x direction, and a corresponding wave

travelling in the opposite direction, so giving rise to a standing wave, this being necessary in
order to satisfy the boundary conditions.

The above equation can be converted in terms of energy and momentum, expressed

as

U(z,t) = AeiPz=EO/N
We adopt the wave function above as being the appropriate wave function for a free particle
of momentum p = fk and energy E = hw.
o

2
92 —k"0
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which can be written, using E = p?/2m = h?k?/2m:

_Pov_ p
2m dzr2  2m
Similarly
% = —wW
which can be written, using E' = fuw:
ov

ili— = lw) = B,
ot

We now generalize this to the situation in which there is both a kinetic energy and a

potential energy present, then E = p%2m + V (x), so that
2
EVv=L"0 1 v(u)T
2m

where, W is now the wave function of a particle moving in the presence of a potential V (x).
B2 9%y o

_Em +V (;,{r)\l; — iﬁ.§

which is the famous time dependent .Schr"odinger wave equation.
Let the trial solution of the Scrodinger’s wave equation can be given by

U(,t) = (z)e  F"

i.e. where the space and the time dependence of the complete wave function are contained
in separate factors

W% d?i)(x)

" 2m da?
We now see that the factor ©P[—E/] cancels from both sides of the equation, giving us
h? d%¢(x)
" 2m da?
If we rearrange the terms, we end up with
B2 d%(x)

2m  dir?

which is the time independent Schr"odinger equation.

e PR LV (@)p(a)e B = ik —iB [he P My () = Eqp(z)e F/P

+ V(z)Y(x) = EY(x)

+(E -V (z))d(z) =0

Time independent Schrodinger’s Wave equations can be established by the methods
of separation of variable. Let us take the solution for y(t; x) as

Ut 2) = (o) (1

and insert it into the time dependent Schrodinger equation
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h2 92U« '

M) G = g SO+ V@RI | g
LA R @)

"o d T Tt 4 T

Since now the left hand side in above Eq. is only dependent on t and the right hand side
only on X, both sides must be equal to a constant, which we will call E, and we can thus
solve each side independently. The left side yields

ﬁiw—}f = df—_iEdf

f(t)y dt — ' f h

= In(f) = —%EI‘ + const. = f = const.e ‘Et/M
R 1 d*)(x) B2 di)(x) : |
T P(@) dZ Viz) = E —5 1o + V(@) L,(i_)J = E(z).

H :rlr'r\l
Stationary states

A state is called stationary, if it is represented by the wave function
U(t,x) = P(x) e tEUR

For such states the probability density is time independent

[t 0) = () o) LET B = fy(a) .
1

If a particle of mass m has a definite energy E, its wave function ¥ (x, y, z, f) is a product of a
time-independent wave function y(x, y, z) and a factor that depends on time but not
position. Then the probability distribution function |W¥(x, v, z, t)|2= | w(x, y, z) |2 does not
depend on time (stationary states).

Y(xy,zt)=w(xyz)e™"

Particle in One-dimensional Box

Suppose we have a single particle of mass m confined to within a region 0 < x < L with
potential energy V = 0 bounded by infinitely high potential barriers, i.e. V = cofor x <0
and x > L. The potential experienced by the particle is then:

In the regions for which the potential is infinite, the wave function will be zero, for exactly

the same reasons that it was set to zero in Section 5.3, that is, there is zero probability of

the particle being found in these regions. Thus, we must impose the boundary conditions
$(0) = (L) = 0

Meanwhile, in the region 0 < x < L, the potential vanishes, so the time independent

Schr odinger equation becomes:
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h? d*y(x) .-
To solve this, we define a quantity k by
_ [2mE
=\
Ep(a) o
oz T k“(z) =0

whose general solution is

(x) = Asin(kz) + B cos(kz).
It is now that we impose the boundary conditions, that at x = O:
$(0)=B=0
Next, applying the boundary condition at z = L gives

Y(L) = Asin(kL) =0
which tells us that either A = 0, in which case y(x) = 0, which is not a useful solution (it says
that there is no partilce in the well at all!) or else sin(kL) = 0, which gives an equation for k:

kL =nm, n=0,+1 42, ....

kn=nmw/L, n=12...

We exclude the n = 0 possibility as that would give us, once again y(x) = 0, and we exclude
the negative values of 1 as the will merely reproduce the same set of solutions (except with
opposite sign4) as the positive values. Thus we have

o h2k? _ n?m2h?
" 2m 2mL2 "’

we have seen that the boundary conditions, have the effect of restricting the values of the

energy of the particle to those Eq. The associated wave functions will be as, that is we apply

the normalization condition to determine A (up to an inessential phase factor) which finally
gives

n=12,...

Yn(z) = \/%sin(nfr:r/L) O<z<L

=0 r<0, xz>0L.

Particle in a three-dimensional box

In analogy with our infinite square-well potential (U(x) = 0 inside, U(x) = « outside),
let us consider a three-dimensional region in space (box) of equal sides of length L, with the
same potential (U(x) = 0 inside, U(x) = « outside).

We will consider the wave function as separable, that is, can be written as a product
of the three independent dimensions x, y and z:

w(xy.2)=XX)Y(¥)Z(2)
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The Schrodinger equation inside the box becomes

—f—[v(y)zma X094 %00z W) 4 x vy Z(Z)}EX(x)Y(y)Z(z)
m ox? oy®
Or, dividing by X(x)Y(y)Z(z) we have:

_h_z[ 1 o°X(x) 1 Y(y) 1 azz(z)J

X(x) ox*  Y(y) &  Z(z) oz°

\-’_‘ b _y= y 5
2013 Person Edscatcr. ¥ A"
This says that the total energy is contributed to by three terms on the left, each
depending separately on x, y and z. Let us write E = E, + E, + E.. Then this equation can be
separated into three equations:

X gy
2m  ox?
h? 6Y(y)
2m oy? EY(y)
A O =
2m oz°

These obviously have the same solutions separately as our original particle in an
infinite square well, and corresponding energies:

2h2
X, (X)=C,sin ”XL”X (n, =1,2,3...) By = o (c=123.)
2 212
Y, (y)=C, sin”v_fy (n, =12.3..) E, - nYZr;[L? (n, =12,3..)
n Z 2 232
"2 —12,3.) E, - ”22 ”Lf’ (n, =12,3..)
m

A particle’s wave-function is the product of these three solutions,
w (% y,2) =X (XY (¥)Z(z) =Csin 2 Xsin ”nysin ”Zfz

We can use the three quantum numbers nx, ny, and nz to label the stationary states
states of definite energy). Here is an example of a particle in three possible states (nx, ny, nz)
2,1,1),(1,2,1)or(1,1,2).

e
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The three states shown here are degenerate: Although they have different values of nx,
ny, and nz, they have the same total energy E.

A7’ Rt PRt 3nPhP
- 7t 2t 2 = 2
2mL® 2mL®  2mL mL

E=E,+E +E,

Energy Degeneracy
e For a particle in a three-dimensional box, the allowed energy levels are surprisingly
complex. To find them, just count up the different possible states.
e Here are the first 6 for an equal-sided box:

242
37°h
Ei= 2
E 2mL
A
(3.2,1),(3,1,2),(1,3,2), 4 g
(2:3,1);(1,2,3), @2 1,8) 3 ©1,1,1
(2,2,2) 4E, |
1
(G, 1,1, (1,3,1),(1, 1,3) o B, 1
(2/2,1%2,1,2),0,2,2) 3E| |
@5 L 1)501,2,:1,(11:1,:2) 2E)
(1, 1,1 Ei 1
E=0

2012 Pearson Education, Inc

If length of sides of box are different:

e :(niﬂigij Ll
L> L? L?)2m

(breaks the degeneracy)

1. For a one-dimensional particle in a box system, the solution of the Schrodinger
n’h’

5 -

8mL

equation leads to the quantized energy £, =

What is the zero-point energy for

the system?

The zero-point energy (ZPE) for a quantum mechanical system is defined as the
lowest possible energy allowed. In the case of the harmonic oscillator, the energy
depends on the quantum number n, and n=1,2,3, ....
272 2
Thus, ZPE:Elzi: "
8mil 8mI
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2. The m-electron of a conjugated polyene molecule can be modeled as a particle in a
box. Assuming a length of 0.6 nm for the one-dimensional box,

A. calculate the energy gap between the first excited state and the ground state for
the electron.

For the one-dimensional particle in a box, the energy is given by

B n’h’

" 8mDl
The energy gap between the first excited state (n= 2) and the ground state
(n=1)is
JE=E,0E,
o 2nt R

8m I’ 8m[I’
3

8m I

~ 3% (6.626 x 10 Js)?
8x9.1093897 x 10= kg x (6 x 107 m
~5.02x107J.

B. what is the corresponding frequency of the photon absorbed as the electron
makes a transition from the ground state to the first excited state?

AE =hv
Vv=AE/h=502x10"°7/6.626x10""Js =7.58 x10"* H=

3. For a one-dimensional particle in a box system, the solution of the Schrédinger
equation generates a wave function ¥, (x) = %sin(%x) for the state n.Verify that

¥ (x)satisfies the Schrédinger equation.

For the one-dimensional particle in a box system, the Hamiltonian operator can be
defined as

Befap—-lld o Fd
2m dx’ 2m dx?
When we operate the Hamiltonian on the wavefunction, we obtain
2 2[5
ol d —sul(—r)
2m dx’ L

7
- n_ 2
= ) sm(—x)
”m
_mh /'— sm(—x)
emP\ I L

E,_ (%)
Thus, the given wavefunction ¥, (x) satisfies the Schrédinger equation.

H- (x)=C
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4. For the ground state of the particle in a box system ¥, (x) = \/%sin%, calculate the
probability of finding the particle between x=0 and x=L/2.

[Useful integral: jsﬁf(m)dx = lx—ism(z.m)]
2 da

The probability of finding the particle between x=0 and x=L/2 is

Ll L2 Li2
. 2 . . T .2 7T
= |¥ (x)¥(x)dx==| sm(—x)sm(—x)dx= | sm (—x)dx.
p{()() Ll (L )sin(—) { (%)

According to the given above, Jsilf(m-)dx = %x —%sm(zm) :
Ao

we have
21 . L2
P=—[—x_—sin(—x)
oD sin=] g
2 L_ L . 201 _ .
=220 [sin(=—=—)Csi(0)]}
A 4__[ ( ) I3
27 1
L4 2

5. Find out the degeneracies of the lowest four energy levels for the three- dimensional
particle in a box system with the dimension Ly=L,=L..

The energy for the three-dimensional particle in a box system is given by
272 242 2 72

ne h N ny, h LI h .

8mL Sm_li, 8mL

If Lyi=Ly=L;, the above expression reduces to

2

E=E +E +E =

E =

(Hf. + ni + rrf ).

9}

8mlL,

The degeneracy of an energy level equals to the number of quantum states for the
given energy. The lowest four energy levels and the corresponding degeneracy is

listed below:
Energy Levels
: , h? Possible States D
(in units of ——) Ny Ny N, egeneracy
8mL,
3 111 1
6 121,211,112 3
9 212,221,122 3
12 222 1
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